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- Abstract —
- | By
. The formulation of the decision making of a failure detection Distrib —
' process as a Bayes sequential decision problem (BSDP) provides it uP#pnl__
} a simple conceptualization of the decision rule desigan problen. Avallability goq
! . As the optimal Dayes rule is not computable, a methodology that ——“‘"“A‘~‘ ~ es
P is based on the Baysian approach and aimed at a reduced computa- D vail and/or
tional requirement is developed for designing subopcimal rules. ist Special
A numerical algorithm is coastructed to facilitate the desiga and
performance evaluation of these suboptimal rules. The resulc of f
applying this design methodology to an example shows that this
aporoach is a useful one. I
* This work was supported in part by the Office of Naval Research under Contract
No. N00014-77-C-0224 and in part by NASA Ames Research Center under Grant NGL-22-009-124.
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1. INTRODUCTION 2. THE 3AYESTAN APPROACH '
The failure detection and identification (FDI) The BSDP formulation of the FDI problenm consists
process involves monitoring the sensor measurements of six elements:
or processad measurements known as the residual [1] 1) 0: the set of states of nature or failure
for changes from its normal (nro-fail) behavipr. Re- hypotheses. An element 2 of © may denote a single
sidual samples are observed in sequence. If a failure type i failure of size v occurring at time (9=
is judged to have occurred and sufficient information (i,t,v)) or the occurrence of a set of failures (pos-
(from the residual) has been gathered, the monitoring sibly simultaneously), i.e. 5-((i1,r ,ul),...,(in,rn,
process is stopped. Then, based on the past obser- vn)). Due to the infrequent nature 6f failure, we
vations of residual, an identification of the failure will focus on the case of a single failure.
is made. 1If no failure has occurred, or if the in- In many applicacions it suffices to just identify
formation gathered is insufficient, monitoring is not the failure type without estimating the failure size.
incerrupted so that further residual samples may be Moreover, it is often true that a detection system
observed. The decision to interrupt the residual- based on (i,t,v) fur some appropriate ¥ can also de-
zonitoring to make a failure identification is based tect and identify the type of the failure (i,t,v) for
on a compromise between the speed and accuracy of the v>V. Thus, we may use (i,t,V) to represent (i,7).
detection, and the failure identification reflects In the aircraft sensor FDI problem [3], for instance,
the design tradeoff among the errors in failure clas- excellent results were obtained using this approach.
sification. Such a decision mechanism beloags to the Now we have the discrete nature set
extensively studied class of sequential tests or se-
quential decision rules. In this paper, we will em- 9 = ((i,7), i=l,.... M, «t=1,2,...,!}
ploy the Bayesian Approach [2] to design decision
rules for FDI systems. where we assume there are M different failure typ=s
In Section 2, we will describe the Bayes formu- of interest.
lation of the FDI decision problem. Although the 2) u: the prior probability mass function (PMF)
optinal crule {s generally not computable, the struc- over the nature set 3. This PMF represents the a
ture of the Bayesian approach can be used to derive priori information concacning the failure, i.e. how
practical suboptimal rules. We will discuss the de- likely it is for each tvpe of failure %o occur, and
sizgn of suboptimal rules based on the Bayes formula- when is a failure likely to occur. Because this in-
f rion in Section 3. In Section &, we will report our formation may not be available or accurrate in scrme
E experisnce with this approach to designing decision cases, the need to speciiv u is a drawhack of the -
; rules throuzh a numerical example and simulation. Bayes approach {or such cases. Nevertheless, we will
)

see that {¢ can be ragarded 35 a paraneter in the de-

F sign of a Bayes rule.

- In general, u mav te arditrars. Hera, we 21s53u~e

i the underlving failuze orocess his 1wy 27onerTies:

] i) the M failures of ) ar2 indepermdent of vne nother,
and 11} the occurrence oI 213 failure 1 ois 2
Bornoulli procuess with :::2ess) paravetoer Sy ™Ne
Zarneulli 2eocess (oaro s otdias Ty The Pa{ston aroac-
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describes a large class of fatlures (such as seasor
failures) while providing a simple approximacion for
the others. It is straightforward to shcw that

b1, 1= (1p (L) "1 i=1,....M, t=1,2,....

where
M
p=1 - I (1-p,)
=1
ali)=p (L-p )"y T o (1-0 )71t
i i j=1 3 3

The parameter p may be regarded as the parameter of
the combined (Bernouylli) failure process - the oc-
currence of cthe firsc failure; o(i)can be interpreted
as the marginal probability that the first failure

is of type i. Note that the present choice of u in-
dicates the arrival of the first failure is memory-
less. This property is useful in obtaining time-
invariant suboptimal decision rules.

3) D(k): che discrete set of terminal actions
(failure identifications) available to the decisiom
maker when the residual-monitoring is stopped at time
k. An element & of U(k)may denote the pair (j,t),
i.e. declaration of a type j failure to have occurred
at time t. Alternatively, § may represent an iden~
tification of the j-th failure type without regard
for the failure time, or it may signify the presence
of a failure without specification of its type or
time, i.e. simply an alarm. Since the purpose of FDI
is to detect and identify failures that have occurred
D(k) should only contain identifications that either
specify failure times at/before k, or do not specify
any failure time. As a result, the number of ter~
minal decisions specifying failures times grows with
k while the number of decisions not specifying any
time will remain the same. In addition, D(k) does
not include the declaration of no failure, since the
residual-monitoring is stopped only when a failure
appears to have occurted.

4) L(k;9,8): the terminal decision cost func-
tion at time k. L(k;6,3) denotes the penalty for
deciding eD(k) at time k when the true state of
nature is 8=(i,t). It is assumed to be bounded and
non~negative and have the structure:

L((1,1),8) 1<k, &eD(k)
L(ki(L,7) .6)={

LF >k 8eD(k)
where L(2,8) is the underlying cost function that is
independent of k; LF denotes the penalty for a false
alarm, and it may be generalized to be dependent on
€. It is only meaningful for a terminal action
(idenctification) that indicates the correct failure
(and/or cime) to receive a lower decision cost than
one that indicates the wrong failure (and/or time).
we furrher assume that the penalty due to an incor-~
rect identification of the failure time is only de~
rendent on the =rror of such an identification. That
is for Z=2(j,t),

Leti,e), (d,e)) = L(t,j,(c~1))
snd Jor & with no tize specification
LOfi,7), %)= L(i, %)
3) e(x): the m-disensional residual (observa-

ti.ar cegaene2. e sRall o let ple(l), Lol t(R)Y L, 0))
denate tne.r (oint cenuitional Aensity.  Ascuming

FA-2A

that the residual {s affected by che failure in a
causal manner, its conditional density has the prop-

erty

pee(l), e, (YL, D))= (e (L), ..., e (k)] (0,-))
i=1,...,M, o>k

where (0,-) is used to denote the no-fail condition.
For the design of suboptimal rules, we will assume
that the residual is an independent Gaussian sequence
with V{mxe matrix) as the rime-independent covariance
function and gi(k—T) as the mean given that the fail-
ure (i,7) has occurred. With the covariance assumed
to be the same for all failures, the mean function
g,(k~7), characterizes the effect of the failure
(1,7), and it is henceforch called the signature of
(i,7) (with g (k-1)=0, for i=0, or t>k). We have
chosen to s:uéy this type of residuals because its
special structure facilitates the development of in-
sights into the design of decision rules. Moreover,
the Gaussian assumption is reasonable in many problems
and has met with success in a wide variety of appli-
cations, e.g., [3] {4]. (1t should be noted that the
use of more general probability densities for the
residual will not add any conceptual difficulty.)

6) e(k,(i,3)): the delay cost function having
the properties:

c(i,k-7) > 0 <k
c(k,(i,1)) = {

>k
c(i,kl—r)>c(i,k2—r) ’ k1>k2>r

After a failure has occurred at T, there is a penalty
for delaving the terminal decision until time k>71
vith the penalty an increasing function of the delay
(k-1). 1In the absence of a failure, no penalty is
inposed on the sampling. In this study we will con-
sider a delay cost function that is linear im the
delay, i.e. c{i,k-t)=¢(i)(k-1), where ¢(i) is a posi-
tive function of the failure type i, and may be used
to provide different delay penalties for different
types of failures.

A sequential decision rule naturally consists of
two parts: a stopping rule (or sampling plan) and a
terminal decision rule. The stopping rule, dernoted
by ¢=(3¢0),0(L;r (1)), ..., s (kir(D),...,v(k)),...) is a
sequence of functions of the observed residual sam-
ples, with ¢(k;r(l),...,r{k))=1, or 0. When
é(ksr(l),...,r(k))=1, (0), residval-monitoring or
sanpling is stopped (continued) after the k residual
samples, r(l),...,r(k) are observed. Alternatively,
the stopping rule may be defined by another sequence
of functions ¥=($(0),¥(1;r(1)),...,ulk;r(l),...,
r(k)),...), where ¢(k;r(l),...,r(k))=1 (0) indicates
that residual-monitoring has been carried. on up to
and including time (k-1) and will (not) be stopped
after time k when residual samples, r(l),...,r(k) are
observed. The functions % and Y are related to each
other in the following way

wlkit(l), o r(®)) = (ki (D), ..., r(R)) o
k-1
T {l-%(s,c(1),...,v(s)))
S=0
with $(0)=2(0).

The terminal cdecision rule is a sequence of
functions, D={d(0) d(Ll;vr (LYY, ... d(kir(l), .., 0(Kk)),
...), mapping residueal <a-nles, r(l),...,.c{k) into
the terninal action ser k). The function
dikir(1Y, ..., r ()Y ropresears the dacision rule used
to arvive at am action {igentiiicatien) i{f savoilne
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is stopped at time %k and the residual samples, r(l),
...,b(R) are observed.

As a result of using the sequential decision
sule (9,D), givea (i,t) is tha trus state of nature,
the total expected cost is:

Upl(1,7), (2, D) 1=2 B (3Cesr(l), . .,v () [e(x, (i, 7))+
k=0
Lik;(i,1t),d(k;x(l), ..., v (k)]

Th2 3SD? is defined as: determine a sequential deci-

io. rule (9%,D*) 50 that the sequencial Baves risk
is minimized, where

c‘.m'

S
M o

Us(2,2)=8U5 [ (1,7}, (3,D)]=E L u(i,)Ugl(i,7),(2,D)]
i=l t=1

(+*,0%) is called the Bayes Sequential Decision Rule

{3S2R) with respect to u, and it is optimal in the

sense that it minimizes the sequential Bayes risk.
In che following we will discuss an incerpreta-

tizn of the sequantial risk for the FDI problem. Let
25 Z2fine the Zollowing notation
-1
Peloy= 25 _p(ksr(l),... (k)
k=1 77
= 0(k)

k=3

S0, =i [2(l), ..., T (O]
2(;0(l), .0, v(k)=1,d(k,c (1), .., r(k))=3}, 8D

N
un‘:

IRETEIE RIS JL AP A -1C 165 NS 1600 B 38 113 6 O RN E3¢Y)
S(k,3)
(i, -)=a (k~7) (1- .»(r)) E ¢(k;r(l),---.r(k))
\’T
2018,9),8= T 2.{50k, 91,11 a-2p 7
k=1

whare PF( ) is the probability of stopping to declare
a failure before the failure occurs at 1, i.e, the
probability of false alarm when a failure occurs at
:ize t; D is the set of terminal actions for all times;
3(%,3) is the region in the sample space of the first
kx rasiduals where the sequential rule (%,D) yields the
ceraninal decision 3. Clearly, cthe S(k,5)'s are dis-
Jo-n: sets with respect to both k and §. The axpres-

ions ~(1 t) and P((i,t),$) are the conditional ex-~
pec:ad delay in decision (i.2. stopping sampling and
=a2xing a failure identification) and the conditional
protabilicy of eveatually declaring &, given a type i
failure has occurred at time 1 and no false alarm has
bean signalled before chis time respectively.
2((i,7).,5) is the generalized cross-detection proba~
5ility. Finally, the sequential Bayes risk Ug can be
wrizten as

=n
T e Lou(i, )L () (L2 () [e(lde(l, )t
’ isl =l £ 3
3 LO(L, 7Y, DP(L, ), )]} (L
Zquat (l) LﬂuiCJ:eS that the sequential Baves
is 1 :n:ion 3f the comitional false
9. d dail.v co decision and
iatoction prov13.x ‘ties, and the optimal sequen-

bl sucly a4 combination. From
ghae cost functions (L oand <) and
rirn LY narovide for the woizhting,

naireotls ssesiiving the tradoott
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relationships amonz the varisus performancz issues.
The advantage of the indirect approach is that only
the total expected cost inst2ad of every individual
performince issue needs to be considered explicitly in
designing a sequential vule. The drawdback of the ap-
proach, howaver, lies in the choice of a set of appro-
priacte cost functions (and somerinmes the prior distri-
bution) when the physical problem does not have a nat-
ural setc, as it doesn’'t in gen2ral. 1In this casz, the
Bayes approach is most useiul with the cost functions
(and the prior distribution) considered as design
parametars that may be adjusted to obtain an acceptable
design.

The optimal terminal decision rule D* can be eas-
ily shown to be a sequence of fixed-sample-size tests
{2]. The determination of the optimal stopping rule
9* is a dynamic programming problem [l]. The immense
storage and conputation required make ?* impossible to
compute, and suboptimal rules =nsc be usad.

Despite the impractical nature of its solution,
the BSDP provides a useful f{ramework for designing
suboptimal decision rules Zor the FDI problem because
of its inherenc characzeristic of explicitly weighing
the tradeoifs between detection speed and accuracy (ia
terms of the cost structurs A sequantial decision
rule defines a set of sequentizl decision regions
S(k,8), and the decision rz2zions corresponding to the
BSDR yield the minimum ris<. From this vantage point,
the design of a suboptimal rule can be viewed as the
problem of choosing a set oi dacision regions that
would yield a reasonably small risk. This is the es-
sence of the approach to subopcimal rule design that
we will describe next.

3. SUBOPTIMAL RULES

The Sliding Window Approxination

The immense computation associated with the 3SDR
is partly due to the increasinz number of failure
hypotheses as time progresses. The remady for this
problem is che use of 3 sliding window to limit the
number of failure hypotheses to be considered at each
time. The assumption mad2 under the sliding window
approximation is that essentially all failures can be
detacted within W time steps aiter thevy have occurred,
or that if a failure is not detected within this time
it will not be detected in ths futurw.. Here, the win-
dow size W is a design parametar, and it should be
chosen long enough so that detection and identification
of failures are possible, but short enough so that
implementation is feasible ([1l]., y

The sliding window rule (37,d") divides the sample
space of the sliding window of residuals {r(k-W+l1),
ve.,r(k)}, or equivalently, the space of vectors of
posterior probabilities, likelihood ratios, or log
likelihood ratios (L) of the sliding window of fallure
hypotheses into disjoint cime-independent sequential
decision regions (S.,S.,...,5.'. Because the residuals
are assumed to be Gaussian vatiables, it is simoler to
work with L (which is crelated to L by a constant):

L= llytk) e b (0]

where

L;(k)={L(k;L,?),....L(R:H.?)]'

Lixii,)=" gf(s)Valrfk-t—sb 53]

=0 '

Then, the sliding window At Lagx tine
¥oW, e ororm the Jos{sion ; n o the wine
J3w i residaal samales, veesa OF
Ny ocoe Wil ostop sampliny T RN




L(k)eSy, and we will procead to take one more obsar-
vation of the residual. The Bayes design probleﬂ is
to determine a set of regions. fso,sl....,sq} that min-
inizes the sequential risk U“((S }). This represents
a functional minimization problem for which a solution
is generally very difficult to determine. A simpler
alternative to this problem is to constrain the deci-
sion regions to take on special shapes, {S;(f)}, that
are parameterized by a fixed dimensional vector, £,

of design variables. Then the resulting design pro~
blem involves the determination of a set of parameter
values £* that minimizes the risk Ug(f). We will
focus our attention on a special set of parametrized
sequential decision regions, because they are simple
and they serve well to illustrate that the Bayes
formulation can be exploited, in a systematic fashion,
to obtain simple suboptimal rules that are capable of
delivering good performance. These decision regions
are:

S(3,0)=(L(k) ¢ L(k;3,E)>E(3.0),
e 15, D L0, D63, ve (4, D [L(ks 1, D-£¢1,T),
(1, )#(3,0)} (3a)

$€0,-)={L(k) : L(k;i,T)<f(i,T),
i=l,...,M, 1=0,...,W-1} (3b)

where S(j,t) is the stop-to-declare (j,k-E) region and

5(0,-) is the continue region (see Fig. l1). Generally
the ¢'s may be regarded as design parameters, but

here, (j,t) is simply taken to be the standard de-
viation of Ll(k,]3, t)

To evaluate UY(f), we need to determine the set
of probabilities, fPr(L(k)cS(J,t) L(k-1)eS(0,~),...,
L(W)es(0,-)}1,t}, koW, 1=0,1,...,M, ©=0,...,W-1},
vhich, indeed, is the goal of many research efforts in
the so-called level-crossing problem [S]. Unfortu-
nately, useful results (bounds and approximatioas of
such probabilities) are only available for the scalar
case [6),[7),[8). As it stands, each of the proba-
bilities is an integral of a kMW-dimensional Gaussian
density over the compound region $(0,-)x...x5(0,-)
xS(j,t), which, for large kMW, becomes extremely un-
wieldy and difficult to evaluate.

The MW-dimensional vector of decision statistics
L(k) corresponds to the MW failure hypothese¢s, and
they provide the information necessary for the simul-
taneous identification of both failure type and fail-
ure time. In most applications, such as the aircraft
sensor FDI poroblem (3] and the detection of freeway
traffic incidents (4], where the failure time need not
be exolicitly identified, the f{ _lure time resolution
pover provided by the full window of decision statis-
cics is not needed. Instead, decision rules that
eaploy a few components of L[(k) may be used. The
decision rule of this type considered here consists
of sequential decision regions that are similar to
(1) but are only defined in terns of M components of
L(k):

Syl R ¢ LGkig,w-1) €y
C-I(j.U-I)IL(n.,,k- 1)-¢, )>C (i.K~1)[L(k'i.W-1\-fj].
Vitj (4a)
S lylg () ¢ LGk § =Dty gel ... M (43)

where §, is the stop-to-declarc-faflure-j region and
is the continue r=yion. Tt should be noted that
the use of (4) is efi{-ctive if cross-carrelations of
sizraturas a~ong hvporheses of the same failure tvpe
3t Zifferenr tivas are ~maller thin those among hypo-

>

theses of different failure tvpes.
The risk for using (&) is

% -1 v
U (I) LFikl r’.+l(k Tz:: ‘:irth_l(k)SSjnso(k-l)!0.')
M e Tow
+L L u(i,1) T I [e()(k-1)+L(4,5)]
i=l =1 k=max[W,z] j=1

x Pril, ) (k)es So(k-1)}1,7}

j'

where
Sp(xy={L,_  ()eSg, ..., L. ; (Wesy)

The probabilities required for calculating the risk
are given by the recursion:

(L, (kD) [Sp(k),1,1) =
[f Pl (K [Sy(k-1),%,)dLy, 1(k)]

So
x I pCL,. 1(L+1)th 1 (), S (k—l) i,1)-
p(L“ 0, (k) [Sylk-1),1,1)el, (k) oW (5)

Prily ) (KeSy, Sok-1){1,7} = PriSy(k-1)1,7}-
£jP(Lw_l(k)]So(k-l),i,t)diw_l(k). 3=0,1,...,M  (6)

with
Pril,_ (u)rs iz} = f L, 1(’)11 L, (W) %))

For M small, nuner1cal Lﬂteg'atlon of (5)-(7) becomes
manageable.
Unfortunately, the transition density,

p(ly_ 1(k+1){Lw 1(k),Sg(k-1),1,1), required in (53} is
difficulet to calculate, because Ly_;(k) is not a
Markov process. In order to facilitate computation
of the probabilities, we need to approximate the
transition densicy. In approxicmating the required
transition density for L. (k) we are, in fact, ap-
proximating the behavior of ly_j. A simple approx-
imation is a Gauss-Markov process (k) that is defined
by

L{k+1) = A2(L) + I(k+l)
E((k)£' ()} = BB'uglk-t)

where & and B are MxM constant ratrices and § is a
white Gaussian sequence with covariance equal to the
(MxM) matrix BB'. The reason for choosing this model
is twofold, Firstly, just as ly.3(k), (k) is
Caussian. Secondly, (k) is Markov so that its tran-
sition density can b2 readily determined. In order to
have f£(k) behave like L, (k), we set the matrices A
and B and the mean of . “sich that

By fE0IREL il ()] (8)
Eg  i0RE" () 1=Eg ML COLY (0} (9)
Eg, (20 (k) beEy Il ()L, (k41)) (10

That is, we have matchel the nmarginal density and the
one-steg cross-ccvariance of «{(k) to those of Lw-l(k)‘

It can e shown that (35-¢10) uniquely specify
L]
Joe-l
A 1 fo
L]
-1
", - - © o -
BBE =50 5 b

) o = '




“x.:(‘(‘*l) - Ei.r{LW-l(k+1>) - A E(Lw_l(k)J
where
. W-1 -
Bl (Ol (0} = T 66
t=0
T =zl (k) 1)} = "F e . vlg
SR (G, G = TGy VG,
t=0
0 >k
K6 vler e ekewl <0
B shaly+l-T<
E; -':HJ_I(R)} a{ t=G l'.~.<0 4 0
h "o v ler K-W+1-7>0
< sk-Wrl~T>
t=0 t t+k0 o}

G, = [glft).---,gﬂ(t))'

Myraover, the matrix A is stable, i.e. the magnitudes
of 3ll of the eigenvalues of A are less than unity,
azd 3 is iavertible if Ggy or G is of rank M. Be-
caus2 § is an artificial orocess (i.e. 4 is not a
direct function of the residuals r(k)) 2(k) can never
se inmplemented for use in (4).

we 2ay choose other Markowv approximations of
y(X) that match the n-step cross-covariance (l<n<W)
Zead of catching the one-step cross-covariance as
(10). The suitability of a criterioa for choosing
the :a»rxces A and B, such as (9) and (10), depends
directly on the failure signatures under consideration
=ay Ye examined as an issue separata from the
sion rule dasign problem. Also, a higher order
Mariov process may be used to approximate Ly_j. How-
2ver, the increase in the computational complexity
=av negata the benefits of the approximation.

Now we can approximate the required probabilities

ia che risk calculation as

P v = - : Iz e b) e Yoo 3
2 b g (RIS, S (k1) i, iR {2()eS 1, Sy (k-1)[ 1,1}

j=0,1,...,M k>W

2zie(x)esy, § ol i, 5}

-=—t5 (k=1)}1,7} g p(l(s)IS (k-1),1,1)d2(k) (11)
j

whare we have applied the sage decision rule to 2(k)
as Ly (k). Therefore, S; and S,(k-l) denote the
d2cision regions and the avent of continued sampling
2p to time k for both Ly ; and L. Assuming g-1
2xists, we have

(0[S0, 1,1 = 11 (20 [Syk-1) 1, 00d2 017
So
® r p(5(k+l) = [2(k+L)-AL(K)1Ii,7)
:(7(&) 1Sg(k=1),1,0)d2(k), k%W (12)

win2re 3(3(k)'i,t) is che Caussian density of g(k)
unz2r the Zailure (i,:). MNew the integrals (ll) and
(.2) rapresent more tractable numerical problenms.

in the event that 3 is not invertible, the tran-
sizicn fenasicy is degernecace and (12) is very difficult
wiale. Very often this problem can be ciccum-
4 9v datch procusaing the residuals. That is, we
‘3?s.¢$= the =odifiad residual sequence: r(k) =
i} “Ly,e' (uk=u+d) ..., v (v [ dor some batceh
3.1 ;~0 wieh k=l 2 ... ag the aew tine i(adex. Ian

using r(k) we have to augmant the signatures as:
[g{(O) RRNY -3 i(v-1)]', i=1,...,M. Bw a3 propar choice
of v, the rank of Gy can be increaseld to ¥ and 3 will
be tnve zible.

Non-Wwindow Secuential Decision Rules

Here we will describe anotner simple decision
rule that has the same decision regions as the simpli-
fied sliding window rulz (3), but the vector (z) of M
decision statistics is obrained differently as follows:

2(k+1l) = & z(k) + 3 r(x+l) am»

where i is a constant stable MxM nmatrix, and B is a
Mx2 constant matrix of ranxk M. Uniike the Markov
model 2(k) that approximaces L, (<). z(k) is a
realizable Markov process driven by the residial. The
advantages of using z as the decision statistic are:
1) less storage is required, because residual saaples
need not be stored as necessary in the sliding window
scheme, and 2) since z is Markov, the required proba-
bility integrals 2re of the form {(11) and (12) so that
the same incagration algnritha can be directly applied
to evaluate such integrais. (It is possible to use a
higher order z, but the addad complexity will nezate
the advantages.)

In order to form the st acxstxc; z, we need to
choose the matrices A and B. %Whan the failura signa-
tures under consideration are constant biases, 8 can
simply be set to equal Go, and A can be chosen to be
al, where O<a<l. Then, the term 3r in (13) resazbles
g'V'lr of (2), and it provides the correlaticn of the
residual with the signatures. The time constant
(1/1-¢) of z characterizes the memory span of z just
as 4 characterizes that of the sliding window rules.

More generally, if «we consider failure signacures
that are not constant biasas, the choice of & may
still be handled in the same way as in the coastant-
bias case, but the selectiorn of a B matrix is more
involved. With some imsights into the nature of the
signatures, a reasonable choice of 3 can often be
made. To illustrate how this may be accomplished, we
will consider an example with two failure modes and an
m-dimensional residual vector. Let

gl(k-t) = Sl
Sz(k-f) = 8,5(k-1+1)

That is, g, is a constanc bias, and g, is a ramp. If
and 8, are not multiples of each other a simple
céoice of B is available:

1f 3 -a 8 and 8,=a,8, where ¢, and c, are scalar con-
s:an%s, the above choice of B has raiik one and is not
useful for identifying either signature. Suppose we
batch process every two rasidual samples toge:“ 27, i.e.
we use the residual sequances r{X)=(r'(2&-1),c°(2k)]",
k=1,2,.... Then we can set B to bSe

. {-5l 3'
B =
2 2t
3 22
.
Thus, the first and ccoend tows o7 2 ea
stant-bias and ra=p natre Ssp anmd 3,
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(and this B has rank two). The use of the modified

‘resudual r(%) in this case causes no adverse effect,

since it only lengthens slightly the interval between
times when terminal decisions may be made. A big in-
crecase in such intervals i.e., the batch processing
of r(k),...,r(k+v) sinultaneously for large v, may
however, be undesirable. For problems where the
signatures vary drastically as a function of the
elapsed time, or the distinguishability among failures
depends essentially on these variations, the erffec-
tiveness of using z diminishes. 1In such cases che
sliding window decision rule should provide better
performance because of its inherent nature to look
for a full window’s worth of signature.

Probability Calculation

An algorithm based on l-dimensional Gaussian
quadrature formulas [9] has been developed to compute
the probability integrals of (11) and (12) for the
case M=2. (It can be extended to higher dimension
with an increase in computation.) The details of this
quadrature algorithm is described in [l]. Its accu-
racy has been assessed via comparison with Monte Carlo
sinulations (see the numerical example). With this
algorithm we can evaluate the performance probabili-
ties and risks associated with the suboptimal decision
rules described above.

Risk Calculatien

in the absence of a failure, the conditional
density has been observed to essentially reach a
steady state at some finice time T>W.- Then, for k>T
we have

Pt{i(k)csjlso(k-l),o—} = bj (14)

Pr(i(k)es.,i(k-l)eso.---.l(T)SSOIS(t-l),i,t} =
bj(k-r i) k>1>T (15)

That is, once steady state is reached, only the rela-
tive time (elapsed time) is important. Generally,
fialures occur infrequently, and decision rule with
low false alarm probabilities are emploved. Thus, it
is reasonalbe to assume 1) p<<l ({(l-p)** 1), and 2)
Pr{Sq (T)]0,~} = 1. The sequential risk associated
w1:h (4) for M=2 can be approximated by

2
u '(£)=p Flpt(1-Pp) £ 0(1)2 z [e(i)e+L(i, J)]b (efi)}
i=]  j=1 t=0 (16)

where
p =~ L1-9)(1-5p)
F 1-b (1-0)

Next, we seek to replace the infinite sum over t
in (16) by cthe finite sum up to t=A plus a term ap-
proxirating the remainder of the infinite sum. Sup-
pose we have been sampling for A steps since the fail-
ur2 occurred. Define:

Pt(j?i)sP:{z(t):SjISO(:—l),i.O} 3=0,1,2

I{ we stop computing the probabilities after ., we
oay approximate

1 Unfortunately, we have not been able to prove
such convergence behavior using elementary techniques.
More advanced function-theoretic methods may be neces-
saryv.

TA-2A

'Pt(j§1)=P3(jfi) j=0,1,2, >3 (17)

then the signature of the failure model is a constant
(including the no-fail case), the -easonxng behind
(l4) 4wolds, and we can se< that ’t(J i) will reach a
steady state value as t (cthe elaspsaed time) increases.
Then, (17) is a valid approximation for a large <.
For the case where failure signatures are not conastants,
the probability of continuing after i time steps (for
sufficiently large &) may be arbitrarily small. The
error introduced by (17) in the risk (and performance
probability) calculation is, consequently, small.
Substituting (17) ia (16), we get

; 2 _ 2
US(E)=PLL#(1-P)T o(D) [c(DE+ £ LILDPU,D] (18)

i=1 j=1
where
-2
T~ z t b, (tli)+b a1y & + ""“‘T" (19)
1 el t=0 P,(011)
REIES)
P(i,j)= Z b, (tll)+b al) T_?—TETI) (20)
t=g J

P. is the unconditional false alarm probability, i.e.
the probability of one false alarm over all time, T
is the conditional expectcad delay to decision, given
that a type i failure has occurred, and P(i,j) is the
conditional probability of declaring a type j failure,
given that faxlure i has occurred. From the assumption
that Pr(S (T)[0,-}=1 and the steady condition (14), it
can be shown that the-mean time between false alarms is ;
simply (1-b ) . Now all the probabilities in (18)-
(20) can be computed by using the quadrature algorithm.
Note that the risk expression (18) consists only of
finite sums and it can be evaluated with a reasonable
amount of computational effort. With such an approx-
imation of the sequential risk, we will be able to
consider the problem of determining the decision
regions (the thresholds f) that minimize the risk.

It should be noted that we could comsider choosing
a set of thresholds that ninimize a weighted combina-
tion of certain detection probabilities (P(i,3)), the
expected detection delay (: ), and the mean time be-
tween false alarms ((1 - b }‘1) Although such an
objective function will not result ia a Bayesian de-
sign in general, it is a valid design criterion that
may be useful for some application.

Risk Minimization

The risk minimization problem has two features
that deserve special attention. Firstly, the sequea-
tail risk is not a simple fuaction of the threshold f,
and the derivative with respect to f is not readily
available. Secondly, czlculating the risk is a costly
task. Therefore, the minimua-seeking procedure to be
used must require few function (risk) evaluations, and
it must not vequire derivatives. The sequence~of-
quadratic-programs (SQP) algorithm studied by Wiafield
[10] has been chosen to solve this problem, because it
does not need any deriva:zive information and it appears
to require fewer functian 2valuations than other well-
known algorithms [10]. Furthecrmore, the SOP is simple,
and it has quadratic ccnvergeace. Very briefly, the
algorithm consists of the rfollowing. At each itaration,
a quadratic surface is fitted to the risk function
locally, then the guadratic nmodel is *ininized over a
constraint region (rance the name SQP). The risk
function is evalusted at =2is minimun and is used in
the surface fitting of the next iteration. The de-
tails of the application of 5QP to riss minimization
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4. NLMEZRICAL EXAPLE

Here, we will discuss an application of the sub-
optizal rule dasizn =ethodolog; described above to a
ausarical example. We will consider the detection
and idencification of two possible failure modes
(without idenzi{iying the failure times). We assume
that the residual is a 2-dimensional vector, and the
vactor failure signatures, l(:). i=1,2, as functions
of the elapsad tinme t are shown in Table 1. The

signature of che firsc failure zode is simply a con-
s:aa: vector. The first component of g,(t) is a con-
szant, while the second coxnponent is a ramp. We have
chosen to exapine these two Cypes of signature be-
mavior (constanc bias and ramp) because they are sim-
sle and describe a large variety of failure signatures
that are cocroanly seen im practice. For simplicity,
<2 have chosen V, the covariancz of r, to be the
idantity macrix.
we will design both a 3iaplified sliding window
(thac uses L;,_ 1) and a rule using the Markov

Tui2

scatistic z. The par*ne:er; associated with the
L, ,» %, and z are shown in Table 2, and the cost
:iZctions and the prior probabilities are shown in
Tabiz 3. To facilicate discussions, we will intro-

duce the following termirology. We will refer to a
¥onee Carlo simulation of the sliding window rule by
Sw, a sizmulacion of the rule using the Markov statis-
tic z as Markov implemeantation {MI), and a simulation
27 zhe nonimplamentable decision process using the
approximation 2 as Markov approximation (MA). (ALl
siculations are basad on 10,000 trajectones.) The
aotation Q20 refers to the resulcs of applying the
quacdrature algorithm to the approximation of Lw—l by

3
Lo

?

1 .S
g, (t)= g, (t)=
1 5 2 .25 + .25¢
4
1 0
U=
0 1

Table 1. Failure signatures.

.826 .oss]
A lie  .837

10 8.5 ]
c -
-0 8.5 14.75

f2.32 2.01
8" = 1201 4.38
1. [-873 0 ] .01 .5
L o .875 .5 2
- - 5.33 e.so] Svi'e [1.25 1.50]
L9 18.13 1.50  4.25

Taszle 2, ?Pari=eters for L R 1 and z.

FA-2A

L(1,1)=L(2,2)=

L(1,2)=L(2,1)=10

c,=c,al
2

1
u(i,7)=.50(1=0) "t ta1,2

p=.0002 T=3 4=8
Table 3. Cost Functions and Prior Probabilicy.

The results of SW, Y&, and Q20 for the thresholds
{8.85, 12.05] are shown in Tigs. 2-6 (see (15) for the
definition of notations). The quadrature results Q20
are very close to MA, indicating good accuracy of the
quadrature algorithm. In comparing SW with MaA, it is
evident that the Mavrkov appraxizacion (Mi) slightly
under-estimaces the false alar= rzte of the sliding
window rule (SW). However, the response of the Markov
approximation to failures is vary close to that of the
sliding window rule. In the prasent example, Lw-l is
a 7-th ordar process, while its apporoxizmation L is
only of first order. 1In view of this factc, we can
conclude that 2 provides 2 very rteasonabla and useful
approximation of Ly_;.

The successive choicas of chresholds by SQP for
the sliding window rule are plotted in Fig. 7. MNote

“that we have not carried the SQ? algorithm far enough

so that the successive choica2s of thresholds are, say,
within .00l of each other. This is because towards
later iterations the perfor=zz indices beconﬂ rela-

tively insensitive to small changses of the f' This
together with the fact that w r2 oaly co*puCV1g an
approximate Bayes risk mean tnat fine scale optimi-

s
zation is not worthwhila. Th forz, with the approx-
imate risk, the SQP is cost 2:iiiciently used to locate
the zone where the mininum lies. That is, the SQP
algorithnm is to be terminated when it is evident that
it has converged into a reasonably small,region. Then
we may choose the thresholds that give the smallest
risk as the approximate soluticn of the minimizacioa.

In the event that thresholds that yield the small-
est risk do not provide the desired detection perfor-~
mance, the design param=tars, L, ¢, u, and W may be
adjusted and the SQP may be repeated to get a new de~
sign. A practical alternative method is to make use
of the list of performance indices (e.g. P(i,j)) that
are generated in the risk calculation, and choose a
pair of thresholds that yields the desired performance.

The performance of the decision rules using Lw 1
and z as determined by SQP are shown in Figs. $8-12.
(The thresholds for ly.; are [8.33, 12.05] and those
for z are {6.29, 11.69).) ¥We note that MI has a
higher false alarm rate than SW. The speed of detec-
tion for the two rules is sizilar. While MI has a
slightly higher type-1 corract detection probability
than SW, SW has a consistently higher ba(t|2) (type-2
correct detection probability) than MI. By raising
the thresholds of the rule using z approoriately, we
can decrease the false alarm rate of MI dowm to that
of SW with an increase in detaction delay and slightly
improved correct detection probdabilitv for the type-2
failure (with ramp signatur2 Thus, the sliding
window rule is slightl» superior to the rule using 2z
in the sense that when both are designed to yield a
comparable false alarm rate, the latter will have
longer detaction delays and si:3htlr lower correct
detwction probability {fcr tvre- {ailure). In view
of the fact that a decisizn rule using 2 is much
sinpler fo 1mplement, it i3 worthy of bdeinyg coasidered
as an alteraative to the siiilng window rule.
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rule design method to the present example is very
good. The quadrature algorithm has been shown to be
useful, and the Markov approximation of Ly ) by i is
a valid one. The SQP algorithm has demonstrated its
simplicity and usefulness through the aumerical exam-
ple. Finally, the Markov decision statistic z has
been shown to be a worthy alternative to the sliding
window statistic Ly ;.

5. CONCLUSION

A methodology based on the Bayesian approach is
developed for designing suboptimal sequential deci-
sion rules. This methodology is applied to a numer-
ical example, and the results indicate that it is
a useful design approach.
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